GRChombo : Numerical relativity with adaptive mesh refinement
نویسندگان
چکیده
منابع مشابه
Controlling reflections from mesh refinement interfaces in numerical relativity
A leading approach to improving the accuracy on numerical relativity simulations of black hole systems is through fixed or adaptive mesh refinement techniques. We describe a generic numerical error which manifests as slowly converging, artificial reflections from refinement boundaries in a broad class of mesh-refinement implementations, potentially limiting the effectiveness of meshrefinement t...
متن کاملEvolutions in 3D numerical relativity using fixed mesh refinement
We present results of 3D numerical simulations using a finite difference code featuring fixed mesh refinement (FMR), in which a subset of the computational domain is refined in space and time. We apply this code to a series of test cases including a robust stability test, a nonlinear gauge wave and an excised Schwarzschild black hole in an evolving gauge. We find that the mesh refinement result...
متن کاملNumerical comparison of nonlinear subgridscale models via adaptive mesh refinement
In this paper, we provide a method of evaluating the efficacy of nonlinear subgridscale models for use in the large eddy simulation of incompressible viscous flow problems. We compare subgridscale “artificial” viscosity models using a posteriori error estimation and adaptive mesh refinement. Specifically, we compare α-Laplacian based subgridscale models and discuss the benefits and limitations ...
متن کاملRelativistic MHD with Adaptive Mesh Refinement
This paper presents a new computer code to solve the general relativistic magnetohydrodynamics (GRMHD) equations using distributed parallel adaptive mesh refinement (AMR). The fluid equations are solved using a finite difference Convex ENO method (CENO) in 3 + 1 dimensions, and the AMR is Berger-Oliger. Hyperbolic divergence cleaning is used to control the ∇ · B = 0 constraint. We present resul...
متن کاملTopology optimization with adaptive mesh refinement
We outline a robust method for topology optimization with adaptive mesh refinement and derefinement (AMR). Since the total volume fraction in topology optimization is usually modest, after a few initial iterations the domain of computation is largely void. It is inefficient to have many small elements in such regions, as these contribute significantly to the overall computational cost but littl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Classical and Quantum Gravity
سال: 2015
ISSN: 0264-9381,1361-6382
DOI: 10.1088/0264-9381/32/24/245011